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We have applied a Monte Carlo method to study the interfacial dynamics of a two-phase Ising
lattice-gas system in two dimensions. Planar and circular interfaces are driven into nonequilibrium
by a temperature gradient, and unstable modes develop causing one phase to grow into the other.
We study the instability of the interface by monitoring the growth of these modes. In the case of
a planar interface, a long-range interaction between the sites results in an extended linear regime
where the modes grow exponentially in time, whereas, in the circular case, they grow only after the
solid disk has exceeded a critical radius. We compare the data with linear stability analysis and find

good agreement.
PACS number(s): 68.10.—m, 82.65.Dp

I. INTRODUCTION

The formation and evolution of dynamic structures is
one of the most exciting areas of nonlinear phenomenol-
ogy. Pattern-formation problems are common in various
fields, including hydrodynamics, biology, metallurgy, and
combustion. The best studied pattern-formation prob-
lems involve growing interfaces between two phases: a
solid and a fluid, or two fluids. Specific systems that
have received much attention over the last several years
include viscous fingering in a Hele-Shaw cell [1-3], direc-
tional solidification of binary systems [4, 5], and dendritic
growth of a solid from a melt [6]. All of these systems
have the feature that between two phases there exists a
moving boundary upon which act competing stabilizing
and destabilizing forces. The physical origins of these
forces depend on the particular system under investiga-
tion. For instance, in the case of dendritic crystal growth,
thermal gradients destabilize the interface separating the
solid and the liquid while surface tension tries to stabilize
it. It is the interplay between the two which leads to the
pattern observed.

A particular interfacial instability, first studied by
Mullins and Sekerka [7, 8], lies at the heart of a variety of
pattern-formation processes. In the case of a solid grow-
ing into a supercooled melt, the instability is driven by
the diffusion of heat through the interface. Mathemati-
cally, the interface evolves through a nonlinear coupling
to a diffusion field, and accordingly, a planar interface is
linearly unstable to long-wavelength perturbations, but
linearly stable against short-wavelength perturbations.

Considerable progress has been made in the past few
years regarding the difficult problem of steady-state pat-
tern selection in certain systems [9, 10]. However, rel-
atively little attention has been paid to the early- or
intermediate-time regime [11-14] where the dynamics of
the interfacial instability plays a vital role. Due to their
inherent nonlinearity and nonlocality, interfacial insta-
bility problems, in general, resist even numerical attack.
Thus a promising alternative approach is through lattice-
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based computer simulations [12,15]. Once an appropriate
lattice model is constructed, it can, in principle, be used
to study the complete dynamics of the pattern-forming
process, from an initially planar interface to a final steady
state. A successful example is the lattice-gas automaton
developed by Kadanoff [16] to study the viscous-fingering
problem [17-19].

In a series of papers [15-24], we have successfully de-
veloped a Monte Carlo method to study interfacial dy-
namics driven by a temperature gradient. Our model is
a two-phase Ising lattice gas which has been modified to
give an interface between coexistent phases. It also has
been coupled to a temperature field, thus providing a
driving force via a thermal gradient. It is found that den-
dritic shapes form and eventually develop into a steady
state. The characteristic wavelength of the steady-state
pattern is established very early in the instability during
the linear early-time growth; we have measured it at late
times and found it consistent with analytic theory [25].
Lattice-gas simulations like ours have additional advan-
tages such as simple boundary conditions and an inherent
crystal anisotropy [24].

In this paper, we present results of a further simu-
lation in two dimensions which focus primarily on the
early-time regime where linear stability analysis of the
continuum equations is expected to be valid. While linear
stability analysis is a powerful and much utilized method
for the study of interfacial dynamics, very little has been
done to simulate the linear regime directly. This is be-
cause an interface driven unstable usually passes through
to the nonlinear regime very quickly before the linear
regime is detectable. In this paper we show that our sim-
ulation of dendritic crystal growth can quantitatively be
compared with linear stability analysis. This is a further
indication that the model captures the essential physics
of the instability, and can provide invaluable insights into
its nature.

We have examined two different two-dimensional ge-
ometries: a circular geometry where the initial crystal
seed is a disk, and a planar geometry where the initial

4592 ©1993 The American Physical Society



48 EARLY-TIME REGIME FOR INTERFACIAL INSTABILITIES . .. 4593

interface is flat. In the case of the planar geometry, the
linear regime is not observed unless we increase the range
of the interaction within our Hamiltonian. This occurs
because the instability is suppressed by the longer-range
force and consequently the duration of the linear regime
is extended. In the case of circular geometry, the surface
of the circular crystal cannot support any instability un-
til its radius R grows to be larger than a critical radius
R*. Consequently the duration of the linear regime can
be controlled directly through the driving force, and the
long-range interaction is not necessary. The development
of R as a function of time is followed until the interface
becomes unstable and is compared with the predictions
of linear stability analysis.

The outline of the rest of the paper is as follows. Sec-
tion IT presents the model and the method of simulation.
Section III summarizes the results and gives the com-
parison between our data and the predictions of a linear
stability analysis. Section IV is reserved for a short dis-
cussion and summary.

II. THE MODEL AND THE ALGORITHM

The continuum description of dendritic crystal growth
is well known in the literature [9, 10] and here is only
briefly summarized. The solid-liquid interface is consid-
ered to be a discontinuous surface for the temperature
field. This is justified since the interface is in general
very thin. As the solidification progresses, latent heat
is released, diffuses away from the interface, and drives
the interface unstable. Although this process is far from
equilibrium, the interface itself can often be considered
to be in local equilibrium, since the time scale of conden-
sation and evaporation at the interface is much shorter
than the time scale for heat diffusion. This is referred to
as the quasistatic approximation.

The interface behavior is fully described by Egs. (1)—
(3) where the temperature field is represented by the di-
mensionless quantity u = ¢(T — T,,)/A, where c is the
specific heat, T, is the coexistence temperature and, A
is the latent heat of transition per unit volume:

Ou 5

E = DV*<u y (1)
u) = —dok , (2)
Mg = De[(Vu)sot — (VU)iig] - 1. (3)

D is the thermal diffusion constant of both the liquid
and solid phases. Equation (2) is the Gibbs-Thomson re-
lation which provides the thermodynamic boundary con-
dition at the interface in terms of the capillary length
do = yTmc/A? with v the surface tension and x the local
interface curvature. Equation (3) is the heat conserva-
tion relation (the heat generated by solidification must
flow into the bulk material) with v,, the normal interface
velocity and n the unit vector normal to the interface.
Equations (1)—(3) are nonlinear since the boundary con-
dition (2) depends on time through «. In principle, there
are corrections to the local equilibrium assumption, Eq.
(2), due to kinetic effects, such that velocity-dependent
terms appear, but for simple analysis, these effects are

generally neglected.

On a planar interface, a linear stability analysis of Eqgs.
(1)—(3) can be carried out by assuming that the interface
is represented as a single-valued function A of the trans-
verse coordinate x and time ¢:

h(x, t) ~ Z etk xtwit (4)
k

Following Langer [25], if the normal velocity of the unper-
turbed interface is v,, then the thermal diffusion length
can be defined as | = 2D /v,. In the quasistatic limit
kl >> 1 and when kdp < 1, the dispersion relation be-
tween the frequency wy and wave number k is then found
to be

wr, = kv, [1 — dolk?] . (5)

Two regimes are defined by the critical wavelength
Ac = 2m/dol. (6)

Modes with wavelength A > A. will be damped out, but
modes with A < A, will grow exponentially in time, the
wavelength Amax = V/3A. growing fastest, giving rise to
the Mullins-Sekerka instability.

Note that the critical length scale A. is the geometric
mean of two vastly different length scales. For a real ex-
perimental system, dg is of order angstroms while ! can
be as large as millimeters. This poses a fundamental
difficulty for any simulation based on microscopic mod-
els, since it is hard, if not impossible, to model the two
length scales with several orders of magnitude difference
in value. Consequently, there is some doubt whether the
linear regime of the Mullins-Sekerka instability can rea-
sonably be simulated in the quasistatic limit. This point
is further discussed below.

With a planar interface, there is an additional problem
posed by the brevity of the linear regime. That this is
so follows from the expression for the perturbed thermal
field, which must have the form

u(t) x e“** + O(h), (7)

where O(h) is a correction caused by the perturbation of
the interface. Since, from (4), this correction must also
have the form h(x,t) ~ e“*t, the perturbation expansion
of Eq. (7) is singular, suggesting that the linear behavior
will indeed be difficult to observe.

To estimate the duration of the linear regime, we as-
sume, following Binder [26, 27], that the model system
incorporates interactions with a range p. In the linear
regime, we therefore expect correlations of size p, and
a critical wave number of size 1/p. A mode with this
wave number, from Eq. (5), will grow like evnt/e so that
the correction term in (7) will be unimportant only when
ev~t/e & p, or when

t K Tiin ~ £ In(o).
Un
The time 7);, measures the duration of the linear regime:
Increasing the range of the interaction p will clearly in-
crease its value.
For circular geometry, the linear stability analysis is
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carried out by studying the growth of a disturbance on a
perfect circle of radius Ry,

R(0) = Ro + Z Om cos(mB)e“™?.

We present a complete analysis in the Appendix. In the
linear regime the modes m decouple and become unsta-
ble, with w,, > 0 when the disk radius Ry is larger than
the critical radius

R:, = v/m(m + 1)dol (8)
= R.[1 + 2m(m + 1)]. (9)

Here R. is the critical radius for nucleation, such that the
droplet shrinks for R < R, but grows for R > R.. Thus,
assuming that the first instability sets in at the lowest
growth mode with m = 2, the disk becomes unstable at

5 = v/6dol. In this case, the simplest test of linear be-
havior is to calculate R, for a given system and compare
it to the simulation results.

III. THE SIMULATIONS

A. The model

Our microscopic model is a lattice gas on a square lat-
tice described by a Hamiltonian

H=-J) S8 -A> S, (10)
<ij> i

where J is the interaction strength; the spin variables
{S;} = {£1} describe the solid (+1) or liquid (—1); A
is an external field. The spin-spin interaction for each
site S; is calculated within a diamond-shaped area cen-
tered at site 2. The number of spins interacting with
S; is 2p(p + 1) where 2p is the length of the diamond’s
axes. Thus, p represents the effective range of interaction
(e.g., p = 1 for nearest-neighbor interactions). To intro-
duce a first-order transition we assign each down (—1)
spin state a d-fold degeneracy [15, 28]. It is then easy
to show that a first-order transition occurs at a temper-
ature Tpr = 2A/1Iné provided that Thys is less than the
second-order transition temperature of the Ising model
with long-range interactions. A latent heat with value
approximately equal to 2A is produced at the first-order
transition.

Since heat diffusion is essential for the instability, a
conventional Metropolis Monte Carlo [29] method with
temperature T fixed is inadequate for our purpose. Thus
a variant of the microcanonical Monte Carlo method [30]
is used with, the spin system in contact with an auxiliary
system of noninteracting demons. There is a one-to-one
correspondence between the spins and the demons. Each
demon has a non-negative energy €4 and energy is ex-
changed between the spins and demons such that the to-
tal energy is conserved. Spins are visited one at a time at
random, and at each site, a spin flip to the other phase is
attempted; a Monte Carlo step (MCS) is complete when
every site has been visited once. The potential change
in energy Aeq4 for each flip is calculated and compared
with the energy available from the demon which corre-
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sponds to the current site. The value of Aey determines
the course of action, as follows:

Neg <0, flip and demon absorbs energy
0 < Aegq < €4, flip and demon gives up energy (11)
€q < Neg, no flip and no change in demon energy.

This algorithm results in the redistribution of demon en-
ergy and consequently represents a thermal diffusion pro-
cess. Since a nonconserved order parameter (), S;) is
coupled with a conserved field (energy), the dynamics
corresponds to model C in critical dynamics [31].

The boundary conditions are similar to those described
in our other publications [20,22,23]. The solid and liquid
phases are initialized at the coexistence temperature 7,
and at some undercooled temperature T' < T,,, respec-
tively. Periodic boundary conditions apply on all four
sides except that the planar simulations fix two opposite
edges of the system to belong to opposite phases. The
edges are maintained at the appropriate temperatures, as
if in contact with heat baths, using a Metropolis method.

B. The planar case

Our data was from a planar interface of size 8196 x 28
at T;, = 2.0J with an undercooling in the liquid melt of
T = 0.45J. The spin degeneracy was § = 3 with a latent
heat of transition A = 1.22J. A range of interaction of
p = 3 was used resulting in a linear regime of an approx-
imate duration of 1000 MCS. The interface was initially
brought to equilibrium at T' = T,,, and then allowed to
evolve for 1000 Monte Carlo steps in the presence of a
thermal gradient. As the interface instability developed,
the Fourier spectrum of modes was measured. Figure
1 shows a time series of a typical one dimensional (1D)
planar interface during the linear stages of the instabil-
ity. In an earlier study [15], we examined the late-time
behavior of a similar interface using the same model and
comparable system parameters; we observed dendritelike
fingers with a characteristic length scale, consistent with
the conventional picture of the Mullins-Sekerka instabil-
ity.

As in previous studies [15, 21], the most informative
method for analyzing the interface is via the power spec-
trum of its fluctuations, defined as

P(k) = |F{h(z)}*, (11)

where F{h(z)} is the spatial Fourier transform of the
interface position in one dimension. Figure 2 shows a
time series of the power spectra, averaged over 400 trials,
for t = 100,500, and 1000 MCS. Note the modes at high
k which are typical of interface roughening. The solid line

S e e e e e
]
FIG. 1. A time series of the 2D planar instability with

long-range interactions. The system size is 8196 x 24 but
only a section 550 X 24 is shown here.
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FIG. 2. The power spectra of the unstable planar inter-
face at t = 100, 500, and 1000 MCS as shown in Fig. 1. The
wave number k is in units of the inverse lattice spacing. Note
the static modes at high k which are characteristic of inter-

face roughening. The solid line approximates the steady-state
roughening modes.

represents the steady-state roughening level, and thus the
modes which extend above it are the growth modes; the
area between the solid line and the curve(s) is the excess
power attributed to the instability.

We are looking for an exponential time dependence of
the modes. As we can see from Fig. 3, the behavior
of typical modes is more or less consistent with our ex-
pectations. The growth of the higher-k modes is weaker
and less defined, saturating at late time. Also, the oc-
casional k mode like that shown in Fig. 3(c) appears
to have been initialized with too high an amplitude; it
exhibits an early-time transient as it quickly relaxes to
local equilibrium and begins to grow normally.

107!
i 0.60x1073
e
e
0.48x103
-2 1 1 1 1 1 1 1 1 !
. 1 3 5 7 9
t (100 MCS)
FIG. 3. Semilogarithmic plots of some typical growth

modes below the critical mode k./27 ~ 0.060; (a) k/27 ~
0.014, (b) k/2m ~ 0.024, (c) k/2m ~ 0.038, and (d)
k/2m = 0.048. The corresponding wavelengths for (a)—(d)
are 74a,41a,26a and 2la, respectively, where a is the unit
lattice spacing. The straight solid lines are fits to the form
e“** as described in the text.

To extract the dispersion relation wy, we fitted each
mode individually, via a least squares algorithm, with
an expression Ae“** where A and w; were the fitting
paramters. The very earliest and latest times were ig-
nored to avoid the influences of poor initialization and
saturation, respectively. In Fig. 4, we show wy, for all of
the k modes in the power spectrum up to k/27 ~ 0.06;
errors in the fitted values are much smaller than the vari-
ations in these values because, despite the large number
of runs (400), the noise is still significant. Modes with
k/2m > 0.06 are not shown because they display no in-
teresting behavior. :

The measured dispersion relation differs in several re-
spects from the theoretical expression (5) which is shown
as the solid line in the inset to Fig. 4. First, decay modes
beyond the critical wave vector k. are not represented;
this is because they are overwhelmed by the equilibrium
capillary modes, already present because of the initial
conditions. Thus, we simply observe wy going to zero at
k.. Second, the measured wy shows no clear sign of a
maximum: Indeed it shows no sign of the expected lin-
ear behavior as k tends to zero. Taking k./2m ~ 0.06,
and attempting to fit the data to Eq. (5), is equally
disappointing: the characteristic asymmetric form of the
dispersion relation is not consistent with data, even for
0.03 < k/27 < k./2m.

Part of the difficulty is that the interesting region of
the spectrum corresponds to wavelengths close to the sys-
tem size: This is true even though the size, at 8196a, is
much larger than that used in our previous 2D work [22].
This causes the instability to occur not far from that

1.0 T T T T T T T T T
8 I
g 6
3
~H
S af :
k
e
2} I .
0 ] 1 L ! ! |1 MM\M
0.01 0.03 0.05 0.07 0.09
k/2m
FIG. 4. The linear stability dispersion function from fits

of the planar interface modes to the expected exponential
behavior. The wave number k is in units of the inverse lattice
spacing. These results are based on 400 simulation trials of
an 8196 x 24 system which employs a long-range interaction
(p = 3). Error bars are much smaller than the noise. The
inset shows the theoretical dispersion relations predicted by
linear analysis (see text).
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region of the spectrum where the capillary fluctuations
take longest to come to thermal equilibrium [22,32]. It is
clear from Fig. 2 that, even after the longest run times,
the modes of the longest wavelength (say k/27 < 0.01)
have not achieved amplitudes close to their equilibrium
values.

However, a more fundamental difficulty is that, de-
spite the large system size, the ratio between the diffu-
sion length ! and the capillary length dj is not sufficiently
large. Because of this, the power spectra show a close re-
semblance to those obtained at early times (¢t < d2/D)
for the roughening of a planar interface in the absence
of a temperature gradient [22]. These spectra were in-
terpreted in terms of a crossover between the early-time
linear regime where the damping of modes is dominated
by the surface tension, and the late-time linear regime
where the damping is dominated by the diffusion of heat.
Equation (5) corresponds to this latter regime, with a
damping coefficient wy proportional to —k3 for kdy < 1:
it is therefore valid when kdy < 1 < kl or a < 1, with

Thus, presumably, our data correspond to the regime
where the condition kdy < 1 is not well satisfied, and
the late-time regime ¢ > d%/D has not been reached. It
therefore seems appropriate to analyze the instability by
linearizing the equations of motion (1)—(3) but treating
a as a small parameter. After some algebra, following
Langer and Appendix B of Ref. [22], the linearized equa-
tions to order a? become:

w= %[Za(j — (24 — 20)k% — 407]
0

D ~
w=—(—k*+§¢ —209) ,
dO

where k and G are kdy and qdg, respectively.

The limit a« = 0, corresponding to the static, equi-
librium interface, gives the results of Ref. [22]. Lowest
order in «, in the limit kdy < 1, gives Langer’s result.
When « is somewhat larger, the equations must be solved
numerically, and give a much more symmetric dispersion
relation, illustrated as the dashed curve in the inset to
Fig. 4 for a = 0.1.

While the dashed curve is not intended as a fit to the
data, since « is unlikely to have a value as large as 0.1,
it illustrates clearly the qualitative consequence of inad-
equate separation of the large and small length scales [
and dp, in the simulation. The instability displayed by
our data is well defined, but probably does not corre-
spond to the classic Mullins-Sekerka situation.

C. The circular case

The size of our simulation system was 128 x 128 with
an initial circular inclusion of Ry = 5 lattice units. The
coexistence temperature was set to T,,, = 1.72J. The
undercooled temperature was 7' = 0.40J with the spin
degeneracy set to § = 3.21. Since long-range interaction
is not necessary to observe the onset of the instability,
the range was p = 1. These particular parameters were
chosen by trial and error to give a specific rate of growth
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without homogeneous nucleation while producing an in-
stability at a droplet radius within the system size. The
statistics were derived from data averaged over 500 trials
of 2500 MCS each, and the instability was observed to
occur, on average, at t ~ 1200 MCS.

Figure 5 shows a time series for the growth of a typ-
ical droplet; note that although fluctuations appear be-
fore the indicated instability sets in, they are eventu-
ally damped out. Visual inspection shows that the disk
becomes unstable at around R ~ 20a where a is the
unit lattice spacing. Figure 6 shows the reference ra-
dius R(t) = 4/N(t)/m, where N is the total number sites
associated with the droplet. R(t) grows like ¢t'/2 [consis-
tent with (A2) for a large undercooling] up to t ~ 1250
MCS when R(t) becomes linear in t. This corresponds
to R ~ 21a.

We compare this result with the expressions (8) and (9)
by two different procedures. First, we employ Eq. (9),
estimating the critical radius R, from the surface energy
~(T) and the bulk free energy AFEy(T) as described in
the Appendix. Since there is some ambiguity in identify-
ing the local temperature at the interface, we choose an
intermediate value of 1.13J. The surface energy is thus
v(1.13J) ~ 1.6J and the bulk free energy difference be-
tween the solid at 7' = 1.72J and the melt at T = 0.41J
is AFEp ~ 0.73J. This gives a critical nucleation radius
of R, ~ 2.3a. Thus, for the lowest possible mode m = 2,
we predict the stability radius to be

R; ~ 25a

whereas with m = 4 (appropriate, perhaps, to the square
anisotropy of the lattice), we find R} ~ 93a. Clearly the
lowest growth mode dominates the instability.

A more direct measurement of R}, can be made by
carrying out a secondary simulation. Since a droplet at
R < R* is always circularly stable, we can observe the
evaporation of the droplet from an initial radius Ry at the
coexistence temperature T,,,. We can fit the results from
the simulation with (A2), treating R. as an unknown

. ®

t=0 t =300

t =900 t =2600

FIG. 5. A time series of the disk instability in 2D for a
system of 256 x 256; images are for ¢t = 0,300,900, and 2600
MCS. The disk remains circular up to the stability radius
R ~ 20a (t ~ 1000 MCS) where it becomes unstable.



48 EARLY-TIME REGIME FOR INTERFACIAL INSTABILITIES . . . 4597

251 a 4

20+ At B

R/a
»
>

15+ a N
10 a : ]

5¢ ] 1 | 1 ] 1]
0.0 04 08 1.2 1.6 2.0 24

t (1000 MCS)

FIG. 6. The reference radius R(t) = 4/N(t)/m as a func-
tion of time for the disk instability. While the disk is circular,
R corresponds to the actual disk radius. When it becomes
unstable and no longer compact, R grows linearly in time.

constant, to find the product doD. Then we only need
vR to establish R}, from Eq. (8). Although vg is not
strictly constant, it changes slowly and we can assign it
a value for a given R.

Figure 7 shows the reference radius of an evaporating
droplet from a typical simulation run for a 128 x 128
system with an initial droplet of size Ry = 50a. The
ambient temperature was set to the coexistence temper-
ature T,, = 1.72J. From a fit of R(t) using (A2), we find
(doD) ~ 0.3 ; note that we expect the poor fit at small
R (late time) due to finite size effects. From the first
simulation data, we estimate the interface velocity in the
neighborhood of the instability to be vg ~ 0.009 lattice
units per MCS. This gives an instability radius

R} ~ 20a.
T T T T T T T T
40 - -
30 —
G
>
x
20l (d,D) ~ 0.3 |
A
t‘
o N
10| 4
e PV
R B 50" .
1 3 5 5 7 9
t (10¥ MCS)
FIG. 7. The radius R(t) for an evaporating disk. Also

shown is a fit to Eq. (A2) with (doD) as a fitting parameter.

It is apparent that both estimates of R} are consistent
with our simulation results.

IV. SUMMARY

For the case of circular growth geometry, quantitative
agreement was found between the simulation results and
those of a linear stability analysis. In the case of the flat
growth geometry, a linear regime was observable only by
using long-range interactions. We demonstrated that a
long-range force suppresses the instability thus making
the linear regime longer in time. The measured disper-
sion relation shows qualitative agreement with linear sta-
bility analysis, but only in a regime kdy < 1 where the
modes are damped by the surface tension rather than
by the diffusion of latent heat. With this proviso, and
taken together with the steady-state results reported ear-
lier [15], the agreement with linear stability analysis give
further support to our model as capturing the essential
physics of the phase boundary. Our lattice-gas model
thus provides an alternative method for tackling the dif-
ficult problem of pattern formation during solidification.
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APPENDIX

If the initial radius of the droplet R = Ry is larger than
the critical nucleation radius R., it will start to grow. In
two dimensions, R, is usually expressed as R, = v/AEy
where « is the surface free energy and AFE, is the bulk
free energy difference. Values for v(T') and AEy(T) are
available, respectively, from perturbative analysis of the
regular nearest-neighbor 2D Ising model [33] and from
mean-field analysis.

When R > R, the growing droplet will remain circu-
larly stable until R ~ R}, where m denotes the dominant
mode of the instability. It will then become unstable and
begin to grow finger formations typical of the Mullins-
Sekerka instability (see Fig. 5). Expressions for R}, can
be obtained from linear stability analysis of the circular
interface.

Assuming a perfect circle of radius Ry (t), Egs. (1)—(3)
have unperturbed solutions for u(r)

up(r) = {(ARO —do)/T — A, r > Ry (1iq1.1id)
—do/Ro, r < Ry (solid).
(A1)

Using the continuity equation, we find the unperturbed
interface velocity to be

_dRo _ o . D(AR, —do)

VR, = 7 R(Z) El (Az)

where t is the radial interface normal vector. From the
limit vp, = 0, an equivalent expression for the critical
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nucleation radius is then obtained. It becomes R, =
do/A, where dg is the capillary length and A = —u(o0) is
the dimensionless undercooling at infinity.

Equation (A2) describes the rate of growth of a stable
disk. A small perturbation is then introduced at the disk
interface

R(6) = Ro + Z Pm cos(mf)e“t; (A3)

with the perturbed thermal field having a similar form

u(r) = uo(r) + Zum () cos(mB)e“mt (A4)

and where

—m
Anr )

r> R
un) = { G 0

TSRO

(liquid)
(solid).
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Linearizing the expression for the perturbed interface, we
evaluate the growth rates of the modes to be

VR (m — 1) 2Dd,
~ DR T ) g
wm Ro vRR2

m(m — 1)] , (A5)

where growth occurs for m > 2. The instability radius
for a given mode m is then defined by the limit w,, — 0;

2Dd,
VR

(R)? =m(m+1) (m > 2). (AS6)

Substituting Eq. (A2) into Eq. (A6) and using R. =
do/A, this can be rewritten as

1;':“ =2m(m+1)+1

(m > 2). (A7)
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